Région académique
Auvergne-
Rhône-Alpes

Portail documentaire

CDI - Lycée Simone Weil

  • Historique de recherches
    • Recherche simple
    • Recherche avancée
    • Périodiques
    • Fonds répartis en section
    • Actualités
    • Evénements
    • Coups de coeur
    • Les règles du CDI
    • Les animaux et nous : imaginer, connaître, comprendre l'animal
    • Humanités, Littérature et Philosophie
    • Préparation concours Sciences Po
    • Orientation
    • Bande dessinée
    • Livres numériques
    • Simone Weil
    • Jane Austen
    • Ressources institutionnelles
    • Ressources pédagogiques
    • Des outils
    • Faire une recherche sur le portail documentaire
    • Faire une recherche sur internet
    • Mettre en forme un document
    • Travailler l'oral
    • Culture numérique
    • Presse et EMI

Se connecter



Mot de passe oublié ?
  1. Accueil
  2. Retour
  • Détail
  • Bibliographie
Justens Daniel. « Tchebychev et les suites monotones » in Tangente. Hors-série (Paris), 087 (09/2023), p.24-26.

Tchebychev et les suites monotones
memofiche
Ajouter au panier Ajouter au panier
CommentairesAucun avis sur cette notice.
Titre : Tchebychev et les suites monotones (2023)
Auteurs : Daniel Justens
Type de document : Article : texte imprimé
Dans : Tangente. Hors-série (Paris) (087, 09/2023)
Article en page(s) : p.24-26
ISBN/ISSN/EAN : 1294-9949
Langues de la publication : Français
Descripteurs

suite mathématique

Résumé : Le développement et les applications relatifs à l'inégalité (première inégalité de Tchebychev, seconde inégalité de Tchebychev) : l'inégalité de corrélation dans le domaine de la statistique (covariance) ; la conjecture de Bertrand (inégalité de Tchebychev à la base de la démonstration du postulat de Bertrand). Encadrés : apports mathématiques de Tchebychev (théorie des nombres, polynômes de Tchebychev, cheval de Tchebychev, théorie des réseaux) ; orthographier les noms russes (alphabet cyrillique) en caractères latins (le cas de Tchebychev) ; présentation et résolution de la conjecture de corrélation gaussienne.
Nature du document : documentaire
Genre : article de périodique
Réserver

Exemplaires (1)

Code-barresCoteSupportLocalisationSectionDisponibilité
8941archivesPériodiqueCDIPériodiquesDisponible
Nouvelle recherche
Haut de page

Horaires

Lundi : 8h45 - 18h30

Mardi : 7h45 - 18h00

Mercredi : 7h45 - 12h00
Jeudi : 7h45 - 18h00

Vendredi : 7h45 - 17h00

Contact

04 71 05 66 66
0430021p-cdi@ac-clermont.fr

Liens utiles

  • Mentions légales
  • PMB Services
  • Plan du site
  • data.gouv.fr
  • logo académie de Clermont