Région académique
Auvergne-
Rhône-Alpes

Portail documentaire

CDI - Lycée Simone Weil

  • Historique de recherches
    • Recherche simple
    • Recherche avancée
    • Périodiques
    • Fonds répartis en section
    • Actualités
    • Evénements
    • Coups de coeur
    • Les règles du CDI
    • Les animaux et nous : imaginer, connaître, comprendre l'animal
    • Humanités, Littérature et Philosophie
    • Préparation concours Sciences Po
    • Orientation
    • Bande dessinée
    • Livres numériques
    • Simone Weil
    • Jane Austen
    • Ressources institutionnelles
    • Ressources pédagogiques
    • Des outils
    • Faire une recherche sur le portail documentaire
    • Faire une recherche sur internet
    • Mettre en forme un document
    • Travailler l'oral
    • Culture numérique
    • Presse et EMI

Se connecter



Mot de passe oublié ?
  1. Accueil
  2. Retour
  • Détail
  • Bibliographie
Haiech Mercedes. « Equations différentielles : connaître l'espace des solutions sans les calculer » in Tangente (Paris), 204 (03/2022), p.42-45.

Equations différentielles : connaître l'espace des solutions sans les calculer
memofiche
Ajouter au panier Ajouter au panier
CommentairesAucun avis sur cette notice.
Titre : Equations différentielles : connaître l'espace des solutions sans les calculer (2022)
Auteurs : Mercedes Haiech, Auteur
Type de document : Article : texte imprimé
Dans : Tangente (Paris) (204, 03/2022)
Article en page(s) : p.42-45
ISBN/ISSN/EAN : 0987-0806
Langues de la publication : Français
Descripteurs

démarche scientifique

équation différentielle

Résumé : Dossier consacré au mélange d'outils, méthodes et techniques de la géométrie, de l'algèbre et de l'analyse pour connaître l'espace des solutions d'une équation différentielle sans leurs calculs, à partir de l'exposé du travail de thèse de l'autrice : l'étude des formes géométriques à partir d'équations ; l'obtention d'objets géométriques élaborés avec l'algèbre des polynômes ; le recours à l'analyse pour l'étude d'une équation différentielle de structure polynomiale ; l'utilisation de la géométrie algébrique pour associer un objet géométrique à un ensemble de solutions d'équations différentielles. Entretien avec Mercedes Haiech : le domaine de recherche dans lequel s'inscrit sa thèse ; ses raisons relatives au choix du sujet, l'insertion de sa thèse dans ses projets. Encadrés : les surfaces (objets de la géométrie algébrique) vues par des artistes ; des fonctions inconnues aux variables.
Nature du document : documentaire
Genre : article de périodique
Réserver

Exemplaires (1)

Code-barresCoteSupportLocalisationSectionDisponibilité
7178archivesPériodiqueCDIPériodiquesDisponible
Nouvelle recherche
Haut de page

Horaires

Lundi : 8h45 - 18h30

Mardi : 7h45 - 18h00

Mercredi : 7h45 - 12h00
Jeudi : 7h45 - 18h00

Vendredi : 7h45 - 17h00

Contact

04 71 05 66 66
0430021p-cdi@ac-clermont.fr

Liens utiles

  • Mentions légales
  • PMB Services
  • Plan du site
  • data.gouv.fr
  • logo académie de Clermont