Région académique
Auvergne-
Rhône-Alpes

Portail documentaire

CDI - Lycée Simone Weil

  • Historique de recherches
    • Recherche simple
    • Recherche avancée
    • Périodiques
    • Fonds répartis en section
    • Actualités
    • Evénements
    • Coups de coeur
    • Les règles du CDI
    • Les animaux et nous : imaginer, connaître, comprendre l'animal
    • Humanités, Littérature et Philosophie
    • Préparation concours Sciences Po
    • Orientation
    • Bande dessinée
    • Livres numériques
    • Simone Weil
    • Jane Austen
    • Ressources institutionnelles
    • Ressources pédagogiques
    • Des outils
    • Faire une recherche sur le portail documentaire
    • Faire une recherche sur internet
    • Mettre en forme un document
    • Travailler l'oral
    • Culture numérique
    • Presse et EMI

Se connecter



Mot de passe oublié ?
  1. Accueil
  2. Retour
  • Détail
  • Bibliographie
Lignon Daniel. « Des nouvelles de la conjecture de Syracuse » in Tangente. Hors-série (Paris), 076 (11/2020), p.8-11.

Des nouvelles de la conjecture de Syracuse
memofiche
Ajouter au panier Ajouter au panier
CommentairesAucun avis sur cette notice.
Titre : Des nouvelles de la conjecture de Syracuse (2020)
Auteurs : Daniel Lignon, Auteur
Type de document : Article : texte imprimé
Dans : Tangente. Hors-série (Paris) (076, 11/2020)
Article en page(s) : p.8-11
ISBN/ISSN/EAN : 1294-9949
Langues de la publication : Français
Descripteurs

démonstration mathématique

problème mathématique

suite mathématique

Résumé : Présentation de la conjecture de Syracuse énoncée par le mathématicien Lothar Collatz et des tentatives de démonstration par Paul Erdos, Oliveira e Silva, David Barina, Richard Crandall, Jeffrey Lagarias, Ilia Krasikov, Jean-Paul Allouche, Ivan Korec, Terence Tao. Encadrés : présentation du mathématicien Lothar Collatz et de la diffusion de sa conjecture également appelée conjecture de Collatz, algorithme de Hasse, conjecture d'Ulam, problème de Kakutani, conjecture 3x + 1 ou 3n + 1. La réduction du volume des calculs pour vérifier la conjecture de Syracuse pour un entier n donné. Définition de l'expression "presque tout" dans un contexte mathématique.
Note de contenu Bibliographie, webographie.
Nature du document : documentaire
Genre : article de périodique
Réserver

Exemplaires (1)

Code-barresCoteSupportLocalisationSectionDisponibilité
5659archivesPériodiqueCDIPériodiquesDisponible
Nouvelle recherche
Haut de page

Horaires

Lundi : 8h45 - 18h30

Mardi : 7h45 - 18h00

Mercredi : 7h45 - 12h00
Jeudi : 7h45 - 18h00

Vendredi : 7h45 - 17h00

Contact

04 71 05 66 66
0430021p-cdi@ac-clermont.fr

Liens utiles

  • Mentions légales
  • PMB Services
  • Plan du site
  • data.gouv.fr
  • logo académie de Clermont