Région académique
Auvergne-
Rhône-Alpes

Portail documentaire

CDI - Lycée Simone Weil

  • Historique de recherches
    • Recherche simple
    • Recherche avancée
    • Périodiques
    • Fonds répartis en section
    • Actualités
    • Evénements
    • Coups de coeur
    • Les règles du CDI
    • Les animaux et nous : imaginer, connaître, comprendre l'animal
    • Humanités, Littérature et Philosophie
    • Préparation concours Sciences Po
    • Orientation
    • Bande dessinée
    • Livres numériques
    • Simone Weil
    • Jane Austen
    • Ressources institutionnelles
    • Ressources pédagogiques
    • Des outils
    • Faire une recherche sur le portail documentaire
    • Faire une recherche sur internet
    • Mettre en forme un document
    • Travailler l'oral
    • Culture numérique
    • Presse et EMI

Se connecter



Mot de passe oublié ?
  1. Accueil
  2. Retour
  • Détail
  • Bibliographie
« Imaginer » in Tangente. Hors-série (Paris), 070 (04/2019), p.39-51.

Imaginer
memofiche
Ajouter au panier Ajouter au panier
CommentairesAucun avis sur cette notice.
Titre : Imaginer (2019)
Type de document : Article : texte imprimé
Dans : Tangente. Hors-série (Paris) (070, 04/2019)
Article en page(s) : p.39-51
Langues de la publication : Français
Descripteurs

fractale

géométrie des surfaces

Résumé : Dossier consacré au champ des possibles offert par l'étude des surfaces. Exposé de problèmes de dynamiques à l'aide de l'étude de trajectoires dans un billard (configuration étudiée par Jean-Victor Poncelet, loi de réflexion et réflexion spéculaire, déploiement de trajectoires périodiques, trajectoires périodiques dans un pentagone et dans un hexagone, trajectoires périodiques dans un triangle équilatéral, trajectoire périodique à vingt-deux rebonds, triangle orthique). Retour sur l'épopée des géométries non euclidiennes : la remise en cause du cinquième postulat d’Euclide par Gauss, Janos Bolyai et Nikolaï Lobatchevski ; les cartes de Beltrami (représentation de Klein, modèle de Poincaré, pseudosphère) ; le disque de Poincaré. Explication et illustration de la technique des corrugations pour répondre à des contraintes géométriques et produire des surfaces dites fractales lisses (compression d’une sphère pour aboutir à une sphère réduite grâce aux travaux mathématiques de John Forbes Nash, de Mikhaïl Gromov et du groupe Hévéa, les représentations isométriques en quatre dimensions (4D) et en trois dimensions (3D) du tore carré plat) ; définition de la régularité d’une surface et du caractère lisse d’une courbe ; définition d’une isométrie. Un point sur la cyclide de Charles Dupin et celle d’Arthur Cayley, les carreaux de Bézier (inventeur, applications et utilisations) et la trompette de Torricelli (ou trompette de Gabriel ou cor de Gabriel, ses particularités). Présentation du roman mathématique "Flatland" écrit par Edwin Abbott, publié sous le pseudonyme A. Square, ses adaptations cinématographiques, les oeuvres qu’il a inspirées chez Charles Howard Hinton et Dyonis Burger. Présentation du paradoxe de l’échiquier ou paradoxe de Fibonacci : sa généralisation par Charles Lutwidge Dodgson (Lewis Carroll), sa description par Warren Weaver, les apports de Sam Loyd et de son fils, son développement par Paul Curry et sa vulgarisation par Martin Gardner.
Note de contenu Bibliographie, filmographie, schémas, webographie.
Nature du document : documentaire
Genre : article de périodique
Réserver

Exemplaires (1)

Code-barresCoteSupportLocalisationSectionDisponibilité
4644archivesPériodiqueCDIPériodiquesDisponible
Nouvelle recherche
Haut de page

Horaires

Lundi : 8h45 - 18h30

Mardi : 7h45 - 18h00

Mercredi : 7h45 - 12h00
Jeudi : 7h45 - 18h00

Vendredi : 7h45 - 17h00

Contact

04 71 05 66 66
0430021p-cdi@ac-clermont.fr

Liens utiles

  • Mentions légales
  • PMB Services
  • Plan du site
  • data.gouv.fr
  • logo académie de Clermont