Résumé :
|
Dossier consacré à la topologie. La notion de groupe dans la topologie algébrique initiée par le mathématicien Henri Poincaré ; la notion de groupe (groupe, groupe fondamental, groupe fondamental du tore). Approche historique de l'apparition de la topologie et de ses concepts dans les sciences mathématiques : les apports des mathématiciens Gottfried Wilhelm Leibniz, Leonhard Euler, August Ferdinand Möbius, Felix Klein (programme d'Erlangen), Bernhard Riemann, Henri Poincaré, Felix Hausdorff et René Maurice Fréchet ; homéomorphisme, homotopie, opérateur, écart, partie compacte, partie ouverte, espace topologique (espaces vectoriels normés, espaces hilbertiens) ; topologie versus analysis situs ; axiomes d'une topologie (ouverts, voisinage) ; topologie dans l'art moderne et en particulier dans le cubisme. Présentation et explications mathématiques des approximations du ruban de Möbius que constituent certaines représentations tridimensionnelles de celui-ci. La relation entre l'objet topologique constitué par la bouteille de Klein avec le ruban de Möbius, à partir de l'analyse de leurs propriétés mathématiques.
|