Région académique
Auvergne-
Rhône-Alpes

Portail documentaire

CDI - Lycée Simone Weil

  • Historique de recherches
    • Recherche simple
    • Recherche avancée
    • Périodiques
    • Fonds répartis en section
    • Actualités
    • Evénements
    • Coups de coeur
    • Les règles du CDI
    • Les animaux et nous : imaginer, connaître, comprendre l'animal
    • Humanités, Littérature et Philosophie
    • Préparation concours Sciences Po
    • Orientation
    • Bande dessinée
    • Livres numériques
    • Simone Weil
    • Jane Austen
    • Ressources institutionnelles
    • Ressources pédagogiques
    • Des outils
    • Faire une recherche sur le portail documentaire
    • Faire une recherche sur internet
    • Mettre en forme un document
    • Travailler l'oral
    • Culture numérique
    • Presse et EMI

Se connecter



Mot de passe oublié ?
  1. Accueil
  2. Retour
  • Détail
  • Bibliographie
« Calculs d'aires » in Tangente (Paris), 178 (09/2017), p.27-37.

Calculs d'aires
memofiche
Ajouter au panier Ajouter au panier
CommentairesAucun avis sur cette notice.
Titre : Calculs d'aires (2017)
Type de document : Article : texte imprimé
Dans : Tangente (Paris) (178, 09/2017)
Article en page(s) : p.27-37
Langues de la publication : Français
Descripteurs

fonction : mathématique

intégration : mathématique

pi : nombre

trigonométrie : géométrie

Résumé : Dossier consacré aux calculs des aires (surfaces), en géométrie. Le recours à Pi pour calculer des aires et inversement (cercle, disque, circonférence, périmètre), Pythagore et le triangle équilatéral pour le calcul des aires hexagonales, les Egyptiens et le calcul d'aires de polygones irréguliers. Point sur les six triangles de l'hexagone avec une démonstration de leur propriété équilatérale ; le théorème de Pick (Georg Alexander Pick) pour calculer l'aire de polygones à partir d'un maillage orthogonal régulier ; le théorème de l'angle inscrit ; la méthode d'exhaustion. Le lien entre aires et primitives, à partir des travaux de Leibniz et de Newton, pour simplifier le calcul de surfaces du plan, par le recours au calcul intégral, dans les domaines du plan quarrables dont la propriété de l’aire est additive : les apports d'Archimède, le concept d'intégrale. Point sur l'équation de Cauchy (Augustin Louis Cauchy). L'usage du calcul intégral pour le calcul de l'aire du cercle avec le passage aux coordonnées polaires pour calculer des intégrales de fonctions non intégrables en coordonnées cartésiennes (trigonométrie, changement de variables, lemniscate de Bernoulli, calcul de primitives doubles). Point sur la raison du calibrage de la distribution normale. La loi des aires de Kepler (Johannes Kepler), en astronomie.
Note de contenu Bibliographie, schémas, webographie.
Nature du document : documentaire
Genre : article de périodique
Réserver

Exemplaires (1)

Code-barresCoteSupportLocalisationSectionDisponibilité
3080archivesPériodiqueCDIPériodiquesDisponible
Nouvelle recherche
Haut de page

Horaires

Lundi : 8h45 - 18h30

Mardi : 7h45 - 18h00

Mercredi : 7h45 - 12h00
Jeudi : 7h45 - 18h00

Vendredi : 7h45 - 17h00

Contact

04 71 05 66 66
0430021p-cdi@ac-clermont.fr

Liens utiles

  • Mentions légales
  • PMB Services
  • Plan du site
  • data.gouv.fr
  • logo académie de Clermont